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Abstract. General first- and higher-order intertwining relations between non-stationary one-
dimensional Sclirdinger operators are introduced. For the first-order case it is shown that the
intertwining relations imply some hidden symmetry which in turn results inRaseparation

of variables. The Fokker—Planck and diffusion equations are briefly considered. Second-
order intertwining operators are also discussed within a general approach. However, due to its
complicated structure only particular solutions are given in some detail.

1. Introduction

It is a basic fact that many physical phenomena are mathematically described by solutions of
linear ordinary and partial differential equations. For example, the dynamics of a classical
system may be characterized by Newton’s equation or equivalently by the Euler-Lagrange
equation. Another example is the dynamics of a non-relativistic quantum system which is
governed by a linear differential equation, the well known 8dimger equation. Hence, the
exact solutions of such kinds of linear differential equations are of basic interest and, therefore,
much effort has been made during the last centuries to find solutions of problems of the form

Ly =0 1)

where £ denotes some linear differential operator. Hegrés the required solution of (1) in

some function space associated with given initial and/or boundary conditions. Many methods
have been developed to find such solutions. This paper is concerned with one of them based
on an assumeithtertwining relation

L1T = IL 2

between two physically relevant differential operatgss £, and the so-calledhtertwining
operatorZ, which is also assumed to act linearly. This intertwining relation allows one to
construct a solution for, say, if a solution ofZ, is known. To be more precise, let us assume
thati, is a solution ofZ,y, = 0, then due to the intertwining relatiafn, = Zy, is a solution

of £1¥1 = 0. Note that in addition we have to assume thaidoes not belong to the kernel
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of Z, i.e. Ty, # 0. Multiplying (2) from the left and right with the inverse operafor' we
haveZ'£, = £,77! and, therefore, one can also start with a given soluigrand obtain

a new solutiomy, = Z-%y; # 0. However, in many cases the intertwining operator is a
differential operator. Therefore, its inverse is a rather complicated integral operator and is of
less use. This situation, however, changes if in addition we assume that both opé&iators
are self-adjoint on some common function spa(l‘f[e{3 = L12. As a consequence one has the
adjoint intertwining relation

'y = L1t ®3)
which, in addition, provides us with the symmetry operaft$ andZ'Z obeying
[£1,7Z]1=0 [£2, T'7] = 0. (4)

The above connection between the solutions of two differential equations was, to
our knowledge, first applied by Darboux [1] to Sturm-Liouville problems. ThatCis;
belong to a class of second-order differential operators and may, for example, represent the
Hamiltonian of a quantum mechanical degree of freedom in one dimension. This fact may
be the reason why most applications of such intertwining relations (sometimes also called
Darboux transformations) have been made for eigenvalue problems of stationaigiSghar
Hamiltonians in one dimension. Herg; , represent a pair of Sabdinger Hamiltonians
intertwined by a first-order time-independent differential operator. This pair of Hamiltonians
together with the intertwining operator (also called supercharge) form the basis of Witten's
model of supersymmetric (SUSY) quantum mechanics [2]. It is also closely related to the
factorization method of Sctidinger [3] and Infeld and Hull [4], and still finds application in the
construction of new potentials giving rise to exactly solvable 8dimger-eigenvalue problems.
See, for example, [5, 6]. This approach has also been generalized [7, 8] to higher-dimensional
systems where matrix Hamiltonians necessarily participate in the intertwining relations. Very
recently, intertwining relations with supercharges of second (and higher) order in derivatives
were investigated for one-dimensional [9, 10] and two-dimensional systems [11] as well as
for matrix Hamiltonians in one dimension [12]. In the one-dimensional case it was shown
that irreducible second-order transformations, these are those which cannot be represented by
two consecutive standard (first-order) Darboux transformations, do exist. In two dimensions
second-orderirreducible transformations allow one to avoid intermediate matrix Hamiltonians.
Both, for one-dimensional matrix and two-dimensional scalar quantum systems non-trivial
symmetry operators (4) were constructed [11] and led to integrability of the corresponding
dynamical systems.

Inthis paper we consider intertwining relations of tlea-stationary Sclirdinger operator

S[V]=id, + 8% — V(x,1). (5)

Hereo, = d/0tr andd, = 9d/0x denote the partial derivatives with respect to time and
position. Throughout this paper we denote these derivatives, if applied to some function
f, by a dot and prime, respectively. Hence, we use the notatians) = (9, f)(x, t) and
f'(x,t) = 0, f)(x,t). Itis also evident that we are going to use units such that Planck’s
constant 24 and the mass: are given bys = 2m = 1.

Replacing the general operatdr by the Schadinger operator (5) the corresponding
equation (1) readS[V]y = 0 and represents the non-stationary $dimger equation for a
one-dimensional quantum system under the influence of an external time-dependent potential
V:RxR— R, (x,t)+— V(x,t). To our knowledge, the first investigation of this type of
intertwining relations was performed by Bagrov and Samsonov [13,14] who considered a time-
dependent first-order and some reducible second-order intertwining operators of non-stationary
Schibdinger operators. In this paper we consider the most general first-order intertwining
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relations for the non-stationary Séldinger as well as for the Fokker—Planck equation. In
addition, we construct the corresponding symmetry operators. The most general second-order
intertwining for the non-stationary Sdhdinger operator is also considered. However, due to
the complicated structure of the general case we consider only several special cases in full
detail. Our paper is organized as follows.

In the next section we will reconsider the first-order intertwining and show that, due to
the R-separation of variables, it provides no basic new results besides those already known
from the stationary case of time-independent potentials. This observation was also recently
anticipated by Finkeét al [15]. However, we additionally show that this fact can be related
to some underlying symmetry structure. We also discuss the time-dependent Fokker—Planck
equation in this context and find that this case does not lead to a trivial result in the above sense.
In section 3 we consider the intertwining for stationary potentials by a non-stationary, i.e. time-
dependent, second-order operator. We present particular results for systems with a third-order
or a fourth-order symmetry operator. We also show that the reducible cases (as studied in [14])
are only very special cases of this class. In section 4 we finally discuss the intertwining of
general non-stationary Sddinger operators by non-stationary second-order operators. As
special cases we consider the intertwining of 8dimmger operators corresponding to a non-
stationary Hamiltonian with that for a stationary one as well as with that of a time-dependent
harmonic oscillator. In the concluding remarks in section 5 we give a short summary and
discuss some aspects omitted in the main text such as zero modes, domain question and
generalizations to complex potentials.

2. Intertwining by first-order operators

In this section we consider the most general first-order intertwining relations for the
Schibdinger operator as defined in (5) and the Fokker—Planck opergioy,

F[U] = =8, + 32+ 3, U'(x,1) = =8, + 3>+ U'(x, )3, + U" (x, 1). (6)

In the latter case, relation (1) becomes the well known Fokker—Planck equation [16]
characterizing the diffusion of a macroscopic (one-dimensional) degree of freedom in an
external time-dependent drift potentid : R x R — R, (x,t) — U(x, t) with a diffusion
constant set equal to unity. For both cases we start with the most general intertwining operator
of first order given by

g (x, 1) = Eo(x, 1) + E1(x, 1), +E2(x, 1) 7

with, in general, complex-valued functio&g &; andé,. Note that in contrast to [13] we also
allow for a first-order operator i.

2.1. The Schirdinger operator and separation of variables

For the above-defined Sditinger operator (5) the most general first-order intertwining
relation reads

S[Valg™ = q*S[V2] (8)

where the function§; (i = 0, 1, 2) and the potential®; , are clearly not independent of each
other. In fact, we now consider the question: whishead to real-valued potentials and how
are the latter connected with the them?

Inserting the explicit forms of the Sabalinger operators (5) and the intertwining operator
(7) into relation (8) and equating the coefficients of identical (partial) differential operators we
immediately find thago andé; may only depend ontime, i.§) = 0 = &;. The assumption that
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&y does not vanish identically then leads to the conclusion that the potential diffefgrcg,
does depend only on time. This is a rather trivial caset and, therefore, we wjj set0
without loss of generalityt. Now making the following reparametrizatigis = €7@ p(r)
andé&(x, 1) = €O p)x'(x,H)withp:R - R, p : R — R*andy : R x R — C we find

Vix, 1) = X200 + ¢ (e, 0) —ix(x, ) +at) — () +ip(1)/p(1)
Vo, 1) = x 20, 1) = x" (e, 1) =i (6, 1) + ()
where « is some time-dependent complex-valued integration constant. Following the
argumentation made in footnote T we mayget 0 without loss of generality. Furthermore,
we may also setr = 0 because it can always be absorbedyirvia the substitution
x — x —1 [ di . Hence, we are left with

Vite, 1) = x2(x, ) + ¢, 1) = i (e, ) +ip(0)/ p(0)
Vale, 1) = x 2, 1) = X" (1) = i3 (x, 0).
Here the so-called superpotentjais still not arbitrary as the potentials are assumed to be real
valued. This can, for example, be achieved by assuming a stationary real-valued superpotential.
This, however, leads to the standard stationary supersymmetric quantum mechanics discussed
to alarge extend during the last two decades [2]. Therefore, we will consider a complex-valued
superpotential

x(x,t) =h(x,t)+ig(x,t) (12)

with real-valued functiong andg # 0. The reality condition In¥; = Im V, = 0 then leads
to

9)

(10)

2g”+[)/,0=0 ’g’—g”—h:O (12)
which can easily be integrated to
lo@) , 1 .
=yt Z +
gx.1) = =5 TS+ 5PN +y () (1)

h(x, 1) =3I p(0) + K (x/p(t) + (1))

wherep andy are arbitrary real-valued function of time akdis an arbitrary real-valued
function of the variabley = x/p + u. In terms of these functions the final form of the two
partner potentials is

K/Z :I:K// _ p(t) 2
p2(z)[ ) ] 20"

. 0o
+<b(t)/l(t) . p(t)zu(t)>x P (t)f (0

Vio(x,t) =

+y (@) (14)
and the intertwining operator reads

g (x,0) = p®)d + K'(x/p(t) + 1(1) — Ié(b(t)x — P2 (). (15)

It is obvious that with appropriate choices &, o, 1 andy at least one of the two potentials
(14) can be made stationary. We will not investigate this aspect here but wish to discuss a more
general property of these quantum systems, the so-cRHegparation of variables.

t Note that fromVa(x, 1) — Va(x,t) = f(t) andS[Vi]y¥1 = O follows thatS[Va]y2 = S[V1 + f]¥2 = O has
the solutionyz(x, 1) = expi fo’ dr f()}¥1(x,1). Thatis, knowing a normalized solution of the time-dependent
Schiddinger equation fo¥; one immediately also has a solution figr, which is also normalized. Complex-valued
f’s are not allowed as botlv; andV,, are assumed to be real valued.

T A posteriorj this justifies the ansatz made in [13].
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In doing so, let us demonstrate that the non-stationaryd@ighger equation
S[Vi2¥na(x, 1) = (i, + 92 = Vao(x, )Y1a(x,1) =0 (16)

with potentials as given in (14), which is equivalent to the intertwining (8), admits a separation
of variables. In fact, under the transformation

y=x/p®+u@®) g2y, 1) =/ pOE Yy 5(x, 1) 17)
this Schidinger equation becomes [17]
ip?(1)0p2(y, 1) = [—07 + K?(y) £ K" (] $1.2(y, 1) (18)

which is obviously separable im andz. Hence, the solutions of the original problem (16)
have the general forny (x, 1) = R(y, )Y (y)T(¢) which is known as thek-separation of
variables [18]. In other words, for any pair of Sodinger operators[ Vs »], which admits a
first-order intertwining relation (8) there exists a transformation (17) to some new coordinate
in which the potentials become stationary and form the well known pair of stationary SUSY
partner potentials [2]. As a consequence, nothing essentially new emerges from the first-order
intertwining of the non-stationary Sdbdinger operator. This fact was also recently observed
by Finkelet al [15]. Note that the transformation associated with the special g&3e= 1
and u(t) = vt with constant velocityw corresponds to the Galilei transformation. See, for
example, the textbook by Galindo and Pascual [19].

Here, let us add that thiR-separation of variables can be related to the existence of
symmetry operators for the two Séalinger operators in questions. First, we note that with
the results above one can directly verify the adjoint intertwining relation

g~ S[Va] = S[Valg™ (19)
where

g~ = (") = —p@d+K'(x/p(t) + p@t)) + lz(b(t)x — p2(Dfe(0).  (20)

In other words, in analogy to the discussion of (3) the 8dhrger operatoS[V] and in
particular its time-derivativedj can be viewed as self-adjoint operators on a suitable domain,
(i8,)" = i3,. Then from (8) and (19) immediately follows

[S[Vil.¢"¢"1=0 [S[V2].q ¢"1=0 (21)

which is a special case of (4). This discussion suggests that the reverse conclusion may also
be true. In fact we are able to prove the following theorem.

Theorem. Any Schibdinger operato§[ V] (with real-valued potential’) having a self-adjoint
symmetry operatoR, obeying [S[V], R] = 0 and being quadratic id,, admits theR-
separation of variables for the corresponding time-dependenb@olyer equation and an
intertwining relation of first order with its superpartner.

For the proof of this theorem we start with the most general quadratic and self-adjoint
ansatz for the symmetry operator,

R(x,t) = —w(t)af+i{5(x,t),Bx}+§(x,t) (22)
obeying the symmetry condition
[S[V], Rl =[id, + 82 — V(x,1), R(x,1)] = 0. (23)

Here,§ : R x R — R and¢ : R x R — R are arbitrary real functions of position and time,
whereasy : R — R* is, without loss of generality, assumed to be an arbitrary strictly positive
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function of time only. The coefficient functions of the symmetry operator (22) are clearly
related with the potentidl due to the symmetry condition (23) giving rise to

o .
§(x.1) = %@(r)x + %v(t) Cx. 1) = d(z) + 1“&52)% + VZZZ()I)X (24)
where® is an arbitrary real function of the variable
X d V(1)
= — | dt 45— 25
IO /o " (D) )
andv is another arbitrary real function of time. In terms of these functions the potential must
take the form
) PO\ , 1 (. v(D)a(r) P (2)
=— — - — + )
veen =g (00 - 5,657z (0= ) o (20)

We note that theR-separation of variables for the Sdkinger equatior§S[V]y (x,7) = 0
becomes explicit by making the change of variables

_ 1/4 i C()(t) 2 U(t) _ 1./.[ \)2(1'))}
¢z, t) =w (t)exp{ I(Sa)(t)x +2w(t)x 1), dr —a)z(‘c) Y(x,t) 27)

which results in
(iw()d, + 32+ P(2)p(z,1) = 0. (28)

Let us remark that the symmetry operaivof the form (22) with coefficient functions related
by (24) is factorizable, i.eR = G*G~ > 0 with g~ = (§*)T. The superchargg" again has
the form (15) if the following substitutions are made:

V(1)
a)3/2(t)
Thus, we conclude that if some non-stationary 8dimger operatof[ V] has a symmetry
characterized by a second-order operator of the form (22) it admits-Heparation of variables
and the superpartner potential Wfcan also be constructed. The non-stationary &tihger
operator associated with this superpartner again has a positive symmetry operator, which in
this case is given b§—g*.

p(t) = 0¥?(1) () — y—z K?+K" — ®. (29)

2.2. The Fokker—Planck equation

In this section we consider the most general first-order intertwining relations allowing one to
construct from known solutions of one Fokker—Planck equation, solutions of its corresponding
superpartner. In order to keep as close as possible to the previous discussion we first transform
the Fokker—Planck equation into a diffusion (or imaginary-time 8dimger) equation. Indeed,

it is well known [16] that the Fokker—Planck equatiBhU] P (x, r) = 0 transforms under the
substitutionP (x, 1) = exp{—U (x, t)/2}¥ (x, t) into the diffusion equation

DIVIy(x, 1) = (=3 + 87 = V(x, )Y (x,1) =0 (30)
where the potentiaV is given in terms of the drift potenti@f in the following way:
Vx,0) = 102, 1) = JU"(x, 1) = 3U(x, 1). (31)

Note that the diffusion operatdp[V] can be obtained from the corresponding $clinger
operatorS[ V] via a Wick rotation b, — —9,. There are, however, essential differences from
the physical point of view as the solutighof the Fokker—Planck equation should represent a
probability distribution. As a consequengéx, r) = exp{U (x, t)/2} P(x, t) is also required

to be real and positive.
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We are now interested in finding the most general first-order intertwining operaas
given in (7) obeying the relation

D[Vilg" = ¢* D[V;] <= F[U1]e"/?q"e V22 = "1/2q%e V22 F[U,)]. (32

Here we closely follow the derivations of the previous section and the result is identical to
that given in (9) after Wick rotation. Again we may get= 0 as it can be absorbed jn
Furthermore, as noted above, the intertwining opetgitet € p (3, +x) should map a positive
solution of D[ V,]¢» = 0 into a positive solution oD[Vy]y1 = 0, i.e.yry = g*, > 0. This
leads us to the conclusion th@atmust vanish identically and has to be real-valued. Hence,
we are left with

Vix, 1) = x2(x, 0) + x"(x, 1) + x(x, 1) — p(t)/p(t)

2 " - (33)
Vo(x, 1) = x“(x, 1) — x"(x, 1) + x(x, 1)
giving rise, cf (31), to the following form of the drift potentials:
Ui(x,t) =2Inp(t) — 2x(x,t
1(x, 1) p(t) —2x(x,1) (34)

Us(x,t) = 2x(x, —1).

In contrast to our result in the previous section we find here ghhas to be a real-valued
function which, however, is a function of the two independent variablasd:. Therefore,

the Fokker—Planck case, in contrast to the 8dhrger case, cannot be transformed into a
stationary problem. This seems to be related to the fact that the diffusion operator is, in
contrast to the Sciidinger operator, not self-adjoint. Consequently, the adjoint intertwining
relation (3) and the resulting symmetries (4) do not exist. Physically, this is due to the time-
reversal symmetry, which exists in the case of the 8dimger equation [19] but not for the
Fokker—Planck and diffusion equation. This is also explicated in the above result (34) which
shows that the two SUSY-partner drift potentials are essentially related via a time reversal.
The additional difference in an overall sign between them is already known from the stationary
case [2].

3. Second-order intertwining for stationary potentials: particular solutions and
symmetry operators

Recently higher-order generalizations of the SUSY-intertwining relations for stationary
Schiddinger operators have been investigated to some extent [9, 10]. In the one-dimensional
case it was shown [10] that in general the intertwining of a pair of stationaryo8ictyer
operators by a second-order differential operator cannot be reduced to two consecutive
transformations with some intermediate self-adjoint Hamiltonian. Inthe two-dimensional case
second-order intertwining operators also allow one to intertwine pairs of standard stationary
Schidinger Hamiltonians with scalar potential [11]. All of these self-adjoint Hamiltonians
have a hidden symmetry, cf (4), characterized by a differential operator.

In the remaining part of this paper we will investigate the intertwining of a pair of
Schibdinger operators§[V;] and S[ V-] by second-order intertwining operators of the form:

g (x,1) = G(x,1)32 — 2F (x, 1)d, + B(x, 1). (35)

As in the first-order case it can be shown that the inclusion of an additional term being of first
order ing, leads to the trivial situations where the differerige— V, depends on the time

only, cf footnoe T p 4.Furthermore, from the intertwining relation (8) wigti above one can
conclude that the functio may not depend orn and similar to the discussion in the previous
section it is even possible to exclude a phase. In other words, without loss of generality we
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haveG (x, t) = g(¢), which should not be confused withused previously, and consider from
now on an intertwining operator of the form
gt (x,1) = g(t)d% — 2F (x, 1), + B(x, 1). (36)

We are unable to find the general analytic solutions of the intertwining relation (8yWith
as given above. Therefore, in this and the next section we will construct only some particular
solutions of interest. More precisely, in this section we shall look for the solutions of the
intertwining relation (8) for the case where both potentialendV, are stationary, i.e. do not
depend on. Itis evident that one class of solutions is already known from [10]. Assuming a
superchargg® whose coefficient functions are real and do not depend ibfollows that the
corresponding solutions of (8) will coincide with those of the stationary intertwining relations
(=324 Vi(x))g* (x) = g*(x)(—32+ V,(x)) which can be found in [10]. Here we are interested
in more general solutions of (8) with operatgisdepending manifestly on That is, we will
search for particular solutions of the intertwining relation

(i3 — Hi)q" (e, 1) = ¢" (x.1)(id; — Ho) (37)

with standard stationary Hamiltoniais , = —af + Vi1.2(x) but an explicit time-dependent
intertwining operator.

3.1. Systems with symmetry operators of third order
A first suitable ansatz with simpledependence in (36) is

g (x, 1) = M*(x) + A(t)a" (x) (38)
where we have set

M*(x) = 8% — 2f (x)d, +b(x) at(x) = a, + W(x). (39)

Here all functions besidesare considered to be real valuedt. With this ansatz the intertwining
relation (37) results in the condition
iAat = HAM* — M Hy + A(Hya" — a* Ho). (40)
Equating the coefficient of identical powersiinon both sides of (40) one obtains the following
system of equations:
iA =2 +2mA
HM*" — M*H, = 2ia* (41)
Hia* —a*Hy, = 2ma”
with real constantg: andm. For our further discussion we consider the two cases 0 and
m = 0 separately.

(a) Solutions form # 0. In this case the first equation in (41) immediately leads to
A(t) = moe™ 2™ — i /m, mg € R, and results in an intertwining operator of the form

g (x, 1) =92 — <2f(x) + ﬂ) 9, +b(x) — ﬁW(x) +moe 2" at(x).  (42)
m m

Itis obvious that without loss of generality we may&et 0 as a non-vanishing may always
be absorbed via a proper redefinitionfondb. As a consequence, the second relation in (41)
leads to a second-order intertwining betwdénand H,. This has already been considered

T We also assuma # 0, as the casd = 0 has already been studied in [10].
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in [10] and it was found that the potentidls, V> and the functio can be expressed in terms
of f and two arbitrary real constardsandd:

" 2
Via(x) = F2f/(x) + f2(x) + gfi);i - L{fZ(();)) - 4f(21(x) —a
/ey, £, d

2f(x)  4f2(x) 4f2x)
Finally, we note that the last equation in (41) coincides with the usual first-order intertwining

relation of SUSY quantum mechanics between the Hamiltomiarend H, + 2m. Therefore,
the potentials can be expressed in terms of the superpot®&ntial follows:

(43)
b(x) = —f'(x) + f2(x) —

Vi(x) = W2(x) + W' (x) Vo(x) = W2(x) — W' (x) — 2m. (44)

Comparing this with (43) we conclude th#t(x) = —2f(x) — mx and f must satisfy the
so-called Painleve IV equation:
f”:f—Q+6f3+8mxf2+2(m2x2—m+a)f+i. (45)
2f 2f

As an example we mention here that tbe= —a? it can be shown that any obeying
the generalized Riccati equatigif = —2f? — 2mxf — a is also a solution of (45). The
general solution of this generalized Riccati equation and the corresponding potentials (44) are
discussed in detail in [5], which also shows their connection to the most general SUSY partners
of the harmonic-oscillator potential. Note that cases with 0 are reducible ones [10].

We have already discussed in the previous section that the intertwining relation (37) and
its adjoint give rise to the symmetry operatgi's;~ andg g™ for (i9; — Hy) and(io, — Ho),
respectively. For the present case of stationary potentials one can use the results of [10] to show
that these symmetry operators (defined up to a square polynomialinhave the explicit
form

RPY(x, 1) = ™ M*(x)a~ (x) + € 2™ g* (x)M~ (x)

R® (x,1) = e2imra—(x)M+(x) + e—2ith+(x)a_(x) (46)

wherea— = (¢")T andM~ = (M™)'. Note that these results have also been recently found
by Fushchych and Nikitin [20] using a different approach.

(b) Solutions form = 0. In this case it follows from (41) that(r) = —2imt where,
without loss of generality, we have set the integration const&@} to zero. The remaining
two conditions of (41) lead to

Via(x) = W2(x) = W'(x) f@x) =n—3W(x)

47
b(x) = (W' (x) — W2(x)) — 2n W (x) — rinx (“47)

whereW is a solution of the Painleve Il equation
W = 2W3 + &inx W +k (48)

andn, k are real constants. Here we note that an additional integration constant appearing on
the right-hand side of the last relation in (47) has been set to zero as it can always be absorbed
via a proper redefinition of the independent variahle

Again let us mention that fok = —4m a particular solution of this equation reads
W(x) = 1/x giving rise to inverse-squared potentidls,. On the other hand, for = 2m a
solution of the ordinary Riccati equatidii’ = W2 + kx is also a solution of (48). Note that
such solutions can be expressed in terms of Bessel functions [21].
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As in the previous case the intertwining relation (37) leads to symmetry operators, which
can also be reduced to third-order differential operators:

Ry = M*"M~ — H? + 2t (M*a™ —a*M™) + 4m°t*Hy

Ry =M"M" — HZ + 2t (a”M* — M~a") + 4m°t* H,.

However, in addition to that, becausemf= 0, we can even construct another pair of third-

order operators commuting wiithd, — Hy »). Indeed, the last two equations of (41) can be
rearranged as follows:

(49)

[Hl, M+Cl_] = 2n~1H1 [Hz, Cl_M+] = ZI;ZHZ (50)
and directly lead to
[i0, — Hy,iM¥a™ +2mtHy] = [i9, — Hp,ia" M* + 2t Hy] = 0. (51)

Hence, besides those given in (49), we have found an additional Hermitian pair of symmetry
operators:
R =i (M+a_ — a+M_) + 4dmt Hy
Iéz =i (a_MJr — M_a+) + 4mt H,.
Whereas these operators have already been given in [20], the previous pair (49) is a new,
independent one, which does not commute with (52).

(52)

3.2. Systems with symmetry operators of fourth order
As a second ansatz for the intertwining relation (37) we consider an operator with two
coefficient functions depending manifestly on time:

G (x,t) =0@)M"(x) +ir(t)xa" (x) (53)
whered anda are assumed to be real-valued functions and the oper#tbenda™ are of the
same form as in (39). For this ansatz the intertwining relation (37) leads to

6 = —2x A =pBo

2M* = xa*Hy — Hixa® Bxa* =M "H, — HHLM".

The first two equations, containing the real consgartan easily be integrated and yield, for
B > 0, oscillatory solutions. Furthermore, with the above conditions the poteitialand
the functionsW andb can exclusively be expressed in terms of the functfon
W@ =-2f@)+S b)) = £/@) +27%x) — Vo) + (/4122 + ao

X

2(1—-2¢c)f(x) LHe=Df)
x2

(54)

Vio(x) = F2f (x) + 4f%(x) + - N gxz

2 X
-2 / dz [ f(2) — 22f%(2)] + ao
X0
whereag, ¢ andxg are some real constants and the functjomust satisfy the nonlinear
third-order differential equation:
—2fVy+4bf' + [+ Af?+Aff" +2Bxf — Bc+ B/2=0. (56)

This equation is certainly too complicated to solve for arbitrary values of the congtantk:.
However, forc = 0 and an arbitrary one can show that affs satisfying the Riccati equation

f(x) =2f%(x) — (B/DHx*+d (57)

are also solutions of (56). Such solutions correspond to Hamiltonians obeying the intertwining
relation Hya* = a* H, in addition to (54).

(55)
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It is straightforward to show that there are no other valuest of the constanwhich
the HamiltoniansH; , are intertwined by operators of first or second order. Since solutions
of equation (57) do not exhaust the solutions of (56) we believe that, at least in some cases,
operatorsy*(x, t) of the form (53) intertwine the Schdinger operators[V; ;] but not the
HamiltoniansH1 ».

3.3. Reducible and irreducible second-order intertwining

The natural question we now consider concerns the reducibility of the second-order
intertwining operator (36) to a pair of consecutive first-order operatpenda;. We again
assume that the real potentidis, = Vi 2(x) are stationary but the intermediate real potential

V may depend on time as well and to which we may always add some arbitrary time-dependent
function A = A(z). In other words, we consider the following chain of Darboux-type
transformations between the Setlinger operators:

S[VA] ~5 S[V] —> S[V + A] - S[V4]. (58)

As shown in section 2, a first-order intertwining f®V1] and S[V,] implies the existence of
second-order symmetry operators, that is,

[S[Vil, aja;] = [S[Va]. a; a3] = O. (59)

Let us first consider that case wherfu; is a trivial symmetry operator, i.efa; =
Hj + const. Then the intertwining operatoq% being of the form (7) with superpotential (11)
can be simplified to

p)=1 glx, ) =g() hx,t) = h(x). (60)

Thus, the operator¢$1i do not depend on timez,f = %4, + ' (x). The same argumentation
applies to the operato@ and H,. Evidently, in this case the Hamiltoniais, » belong to
the class considered in [10], where it has been shown that reducible as well as irreducible
second-order intertwining operators exist.

Inthe case of a non-trivial symmetry operaiu; the potentiaV; is of the form (see [20]
and references therein)

k3
(x +kg)?
Itis evident that this class of potentials does not exhaust all solutions of intertwining relations
(37) with antze (38) or (53) fog*.
The conclusion drawn from this discussion is, that the intertwining relations investigated
in this section have both reducible and irreducible solutions of second oréler in

Vi(x) = ko + kax + kox? + (61)

4. Second-order intertwining for non-stationary potentials

In order to consider the intertwining of Sédinger operators with a non-stationary potential,
it is useful to simplify the general form (36) of the intertwining operagodra little further.
Indeed, by inspecting the general intertwining relation (8) witras given in (36) one finds
the condition

Im F(x, 1) = 2g(t)x + g1(t) (62)

t We exclude here the cage= 0 which corresponds to the intertwining & » by M™*.
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with an arbitrary real functiog;. After multiplying both sides of (8) with

. 2 t 204/
,1/4(t)ex |:I<g(t)x + gl(t)x _/ dr’ g]_(t)>:| 63
$ "asr " e S 22 (63)
and performing some algebra we obtain a new intertwining relation,
. . gx 81 5o\ ~+ ~+ (gx & ~
9 +2 +==1)08, — H = O +2i| =—+=)0, — H. 64
<" '<4g<z> g) 1)q 4 <" '<4g g) 2) 9

which, of course, is equivalent to (8). Here the ‘new supercharge’ and ‘new Hamiltonians’ are
given by

i 1(¢ 2 2F (i
q”+=gaf—2(ReF)ax+B+Zg__<ﬁ+g1) ——(£+gl>
g g

4 4
= g2 — 2(ReF)d, + B (65)
and
~ 1/ &%\ ,.1(s8 2&
Hip=Hip+ =[S - 25 )22+ 2 (=2 - == 66
e e 8(g 2g2>x 2\ " g )7 (59

respectively.
Now, in a second step we make a non-local transformation [17] of the independent variables
(x, 1) — (v, 7) with

T = / - y=gwx -2 / dr’ g1(t")g~¥*(1") (67)
o &) 0

which brings the intertwining relation (64) into the form

(i8, + 02 — gV1) (82 — 2g™%(ReF)d, + B)

= (92— 2¢ 2 (ReF)d, + B)(id, +92 — gV) (68)
where
~ 1 g g2 2 1 glg 2g1
‘/i()’vf):‘/i(x,t)"'é(g_?)x *5 2 g )T (69)

This shows that, without loss of generality, we could have chosen from the very beginning the
operatorg* to be of the form

g (x, 1) = 92— 2f (x,1)d, + b(x, 1) +ic(x, 1) (70)

with all coefficient functions being real valued.

4.1. Intertwining of a non-stationary Hamiltonian with a stationary one

In section 2 we only briefly mentioned that a first-order intertwining betweerd@ober
operators for a non-stationary potentialand a stationary on& is possible. Here, because
of the absence of thR-separation of variables, we will reconsider this aspect for the case of
a second-order intertwining operator of the general form (70) in more detail.

The intertwining relation (8) with ansatz (70) leads to the following conditions for the
coefficient functions:

f=c b+ +def =0 ' =b —Vj+aff =0

71
6.'+2fV2/—b//—4bf/—V2//=0 V1=V2—4f/. ( )



Non-stationary Sclirdinger operators 3595

It may easily be verified that a particular set of solutions of (72) can be expressed in terms of
two arbitrary real-valued functiong and fy, which depend only om andz, respectively:

_lAw _l S
oo = 2 f1(x) + fo(t) e = 2 i)+ fot)
1 ! n 1 1/, )\‘ 72
Vo(x) = % <A308 + > <fl(x) 7 (x) — Eflz(x)) — Zoff(x)> (72)

Vir, 1) = Va(x) —4f'(x, 1) b(x,0) = f'(x, 1) + 2f%(x, 1) = Va(x).

Recall thath, ¢, f and V; are functions ofc ands whereasV, is assumed to be stationary,
i.e. independent of time. This latter assumption actually leads to the explicit form
fo(t) = o exp(rot) + 8 exp(—rot) with arbitrary constants, § andiy. For this case, the
symmetry operator®; associated with the Sabalinger operators[V;] read

Ri=q*'q = H+ zllk(z) —2¢ — 4ic'3, — 2ic”

Ry =q q" = Hj + 33
with H; = —32 + V;. Note thatR, explicitly depends on time, whereds is stationary,
a fact which helps to show that the transformed functipn = ¢*v» of a normalized
solution of S[V,]y2(x, ) = 0 is a normalizable solution of[V1]y¥1(x,¢) = 0. Indeed,
because of the linearity of the Séldinger operator and the stationarity ¥f, we may set
Ya(x, 1) = Yo(x, 1; E) = e Flyp(x) with ¢z being an eigenstate df, associated with
eigenvalueE. Therefore, we have

Wa(x, 15 E), Y (x, 13 E)) = (q"a(x, 1 E), " a(x, 1; E)) = (E* + 03/ . (74)
Finally, we mention that in the particular case of a constant poteviti@vithout loss of

generality we may seit, = 0) the functionf; has to be a solution of the linear fourth-order
differential equation with constant coefficients (see equation (72))

V' —25fi=0 (75)
whose general solution may easily be constructed by standard methods and will be an arbitrary
linear combination of the fundamental solutions(sigx), cog+/Agx), sinh(x/Agx) and
coshy/Aox). Note that the partner potentidl(x,r) = —2[3?log(fi(x) + fo(t))] has
the same scattering properties B = 0. That is, it is a reflectionless potential. As
particular example we may choogg(x) = coshix) and fp(r) = cosh#) which leads to
Vi(x,t) = —2 coshx) sinh(r) /(cosh(x) + coshr))?.

(73)

4.2. Intertwining of a non-stationary Hamiltonian with a time-dependent
harmonic-oscillator Hamiltonian

In the remaining part of this section we consider the second-order intertwining d@fdsicher
operators associated with two non-stationary Hamiltonians. In doing so we limit ourselves to
one of the simplest non-stationary Hamiltonians, namely, that of a harmonic oscillator with a
time-dependent frequency and search for the class of non-stationary pot¥ntidisch are
intertwined with this one.

As a starting point we choose the potential to be of the form

R YO SORN:
Ve =g (% - 2g2<r>) * (79)

which corresponds to the trivial potentiéd = 0 in (69) as we also sgt = 0 in the following
discussion. As a consequence we obtain from (68) the intertwining relation:

(i0; + 07 — U1)(37 — 2f (v, D)3, + B(y, 7)) = (37 — 2f (y, )3y + B(y, 1))({0, +05)  (77)
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where
Ur(y, 7) = g(OVi(y, T) f, 1) =g Y2(t)ReF(x,1) (78)

are given in terms of the new variables= x/,/g andr = [é dt’ g71(t). Taking into account
the relations (72) we have

Uiy, 1) = =40, N0 B0 = @,N) 0. 1)+ 27y, 1) +ie(y, 1)
-1 @) 1 @ fo) (79)
fy.0)=g"""F— cy=5—=—

2 i) + fo(o) 2 () + fo(D)
Whgrefo(r) = 5€M7 +§e*T and f1 is an arbitrary solution of (75) withy andx replaced
by 1o andy, respectively. Returning to the original variablas¢) and settingg (t) = p?(¢),
we find that the original potentials read

- t
Vi = -2 2 2[85 log (ﬁ(plmx) + fo< f de’ p%/)))}
ol 0 (80)
o)
X
which may be compared with the result of Bluman and Shtelen [17] who derived new potentials
being related to the free quantum system (inthecoordinates) via non-local transformations.
Here we note that the special case) = coqwr) leads to the ordinary (i.e. time-independent)
harmonic oscillator case and the corresponding transformation has been called the Jackiw
transformationt.
The present result is also closely related to the specialk&se K” = const. discussed
in section 2.1 where we have shown its close connection witliRtkeparation of variables.
Thus solutions folV; in (80) can be related to a free quantum system characterized by (18).

5. Concluding remarks

In this paper we considered the most general time-dependent first- and second-order
intertwinings of non-stationary Sdbalinger operators. Our discussion in section 2, where
we considered the first-order case, generalizes that of Bagrov and Samsonov [13] from various
aspects. For example, we start out with a more general ansatz as [13] for the intertwining
operator and show that the one made in [13] can be obtained if additive purely time-dependent
terms in the potentials may be ignored. In addition we have shown that all results on the
first-order intertwining of non-stationary Sétlinger operators can be reduced to stationary
problems. This observation was also recently anticipated by Fetkal[15] who found the
corresponding point transformation. In addition we showed that this fact, which is called the
R-separation of variables, is related to the existence of a symmetry operator induced by the
intertwining relation. In this connection we also discussed, to the best of our knowledge for
the first time, the Fokker—Planck equation.

In sections 3 and 4 we considered second-order intertwining operators. Again an initial
brief discussion for this case is due to Bagrov and Samsonov [14] which, however, is limited to
reducible intertwining relations based on the use of an arbitrary solution of a giveid8udper
equation. Here we started with the most general second-order intertwining operator. However,
due to the complicated structure of the general case we limited ourselves to the discussion of
some special cases of interest. In section 3 we gave results for systems with time-independent
potentials and symmetry operators of third and fourth order. We also showed that these results

T See, for example, [22—24] where more general transformations are given.
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contain reducible as well as irreducible intertwinings. In section 4 we considered intertwing
between systems with time-dependent and time-independent potentials. The corresponding
symmetry operators are also given. Finally, we presented explicit results for the second-order
intertwining of standard Schdinger Hamiltonians for a time-dependent quadratic and an
arbitrary potential.

In the main text we concentrated on the implications of the intertwining relations but did
not take into account secondary aspects such as zero modes and domain questions, which we
are going to discuss now. As already mentioned in the introduction, the intertwining may
provide a new non-trivial solutiog; = ¢*v» of a given problem only in the case when
does not belong to the kernel of the intertwining operatar Elements of the kernel af*
lead to trivial solutions. On the other har]V1]v1 = 0 may have non-trivial solutions which
cannot be obtained from solutions 8fV>]y¥, = 0. In this casey; necessarily belongs to
the kernel of the adjoint intertwining operatgr, ¢~ v1 = 0. Therefore, in order to find a
complete set of solutions one has to also consider the kernel of the intertwining operator and
that of the adjoint one. Again the first-order case allows a general discussion. The result of
our discussion in that case (section 2) has led us to the generapfoemp (o, + k' +ig’),
whereh andg are given in (13). Ag" is a first-order differential equation the dimension of
its kernel is at most one dimensional:

Yo(x, 1) o exp{—h(x, 1) —ig(x,1)}. (81)

The restriction of solutions to the linear space of square-integrable functions then leads to the
normalization condition

1- / dr [Ya(x. )2 = / dy exp(—2K (). (82)

Hence, the question of zero modesgéfor its adjoint is equivalent to a discussion of broken
versus unbroken SUSY of the corresponding stationary problem in-teordinate [2]. The
situation in the case of second-order intertwining is a bit more complicated. However, itis clear
that the corresponding kernels are, at most, two-dimensional. In the particular case studied in
section 4.1 the kernel gf* is obviously empty for a real non-vanishing parametgeas in this

case the symmetry operatBp = (¢*)"¢*, cf equation (73), is strictly positive.

Another aspect which we did not discuss in the main text is concerned with domain
questions. Indeed, one is usually only interested in square-integrable solutions of the
Schibdinger equation. There is no guarantee that the intertwining operator maps a square-
integrable solution into a another square-integrable one. This typically happens when the
superpotential or, more generally, the coefficient functions of the intertwining operator become
singular [2]. Hence, the rather general and abstract results presented in the main text should
be understood in the sense that whenever there appear singular coefficient functions a careful
analysis of such domain questions is mandatory. For example, the case of inverse-square
potentials briefly mentioned in section 3.1 (b) is only well defined if the domain (Hilbert
space) is defined by the space of square-integrable functions on the positive half-line with
proper (e.g. Dirichlet) boundary conditionsxat= 0.

Finally, let us mention that it is also possible to extend our approach to complex-valued
potentialsVy 2, which have recently attracted some attention [25]. The case of stationary
complex potentials with first-order intertwining has already been studied in [6,26]. However,
because of the absence of the reality conditions, cf equation (12), the first-order intertwining of
such potentials will not lead to thR-separation of variables. Furthermore, the corresponding
Schibdinger operators are no longer self-adjoint and, therefore, no symmetry operators of the
formg*q~ andg g™ exist. This situation is similar to that of the Fokker—Planck and diffusion
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equation discussed in section 2.2. For the higher-order intertwining the notion of irreducible
transformations is lost in the case of complex potentials.
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