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Abstract. General first- and higher-order intertwining relations between non-stationary one-
dimensional Schr̈odinger operators are introduced. For the first-order case it is shown that the
intertwining relations imply some hidden symmetry which in turn results in anR-separation
of variables. The Fokker–Planck and diffusion equations are briefly considered. Second-
order intertwining operators are also discussed within a general approach. However, due to its
complicated structure only particular solutions are given in some detail.

1. Introduction

It is a basic fact that many physical phenomena are mathematically described by solutions of
linear ordinary and partial differential equations. For example, the dynamics of a classical
system may be characterized by Newton’s equation or equivalently by the Euler–Lagrange
equation. Another example is the dynamics of a non-relativistic quantum system which is
governed by a linear differential equation, the well known Schrödinger equation. Hence, the
exact solutions of such kinds of linear differential equations are of basic interest and, therefore,
much effort has been made during the last centuries to find solutions of problems of the form

Lψ = 0 (1)

whereL denotes some linear differential operator. Hereψ is the required solution of (1) in
some function space associated with given initial and/or boundary conditions. Many methods
have been developed to find such solutions. This paper is concerned with one of them based
on an assumedintertwining relation

L1I = IL2 (2)

between two physically relevant differential operatorsL1, L2 and the so-calledintertwining
operatorI, which is also assumed to act linearly. This intertwining relation allows one to
construct a solution for, say,L1 if a solution ofL2 is known. To be more precise, let us assume
thatψ2 is a solution ofL2ψ2 = 0, then due to the intertwining relationψ1 = Iψ2 is a solution
of L1ψ1 = 0. Note that in addition we have to assume thatψ2 does not belong to the kernel
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of I, i.e.Iψ2 6≡ 0. Multiplying (2) from the left and right with the inverse operatorI−1 we
haveI−1L1 = L2I−1 and, therefore, one can also start with a given solutionψ1 and obtain
a new solutionψ2 = I−1ψ1 6≡ 0. However, in many cases the intertwining operator is a
differential operator. Therefore, its inverse is a rather complicated integral operator and is of
less use. This situation, however, changes if in addition we assume that both operatorsL1,2

are self-adjoint on some common function space,L†
1,2 = L1,2. As a consequence one has the

adjoint intertwining relation

I†L1 = L2I† (3)

which, in addition, provides us with the symmetry operatorsII† andI†I obeying

[L1, II†] = 0 [L2, I†I] = 0. (4)

The above connection between the solutions of two differential equations was, to
our knowledge, first applied by Darboux [1] to Sturm–Liouville problems. That is,L1,2

belong to a class of second-order differential operators and may, for example, represent the
Hamiltonian of a quantum mechanical degree of freedom in one dimension. This fact may
be the reason why most applications of such intertwining relations (sometimes also called
Darboux transformations) have been made for eigenvalue problems of stationary Schrödinger
Hamiltonians in one dimension. Here,L1,2 represent a pair of Schrödinger Hamiltonians
intertwined by a first-order time-independent differential operator. This pair of Hamiltonians
together with the intertwining operator (also called supercharge) form the basis of Witten’s
model of supersymmetric (SUSY) quantum mechanics [2]. It is also closely related to the
factorization method of Schrödinger [3] and Infeld and Hull [4], and still finds application in the
construction of new potentials giving rise to exactly solvable Schrödinger-eigenvalue problems.
See, for example, [5,6]. This approach has also been generalized [7,8] to higher-dimensional
systems where matrix Hamiltonians necessarily participate in the intertwining relations. Very
recently, intertwining relations with supercharges of second (and higher) order in derivatives
were investigated for one-dimensional [9, 10] and two-dimensional systems [11] as well as
for matrix Hamiltonians in one dimension [12]. In the one-dimensional case it was shown
that irreducible second-order transformations, these are those which cannot be represented by
two consecutive standard (first-order) Darboux transformations, do exist. In two dimensions
second-order irreducible transformations allow one to avoid intermediate matrix Hamiltonians.
Both, for one-dimensional matrix and two-dimensional scalar quantum systems non-trivial
symmetry operators (4) were constructed [11] and led to integrability of the corresponding
dynamical systems.

In this paper we consider intertwining relations of thenon-stationary Schr̈odinger operator

S[V ] = i∂t + ∂2
x − V (x, t). (5)

Here ∂t = ∂/∂t and ∂x = ∂/∂x denote the partial derivatives with respect to time and
position. Throughout this paper we denote these derivatives, if applied to some function
f , by a dot and prime, respectively. Hence, we use the notationḟ (x, t) = (∂tf )(x, t) and
f ′(x, t) = (∂xf )(x, t). It is also evident that we are going to use units such that Planck’s
constant 2πh̄ and the massm are given byh̄ = 2m = 1.

Replacing the general operatorL by the Schr̈odinger operator (5) the corresponding
equation (1) readsS[V ]ψ = 0 and represents the non-stationary Schrödinger equation for a
one-dimensional quantum system under the influence of an external time-dependent potential
V : R × R→ R, (x, t) 7→ V (x, t). To our knowledge, the first investigation of this type of
intertwining relations was performed by Bagrov and Samsonov [13,14] who considered a time-
dependent first-order and some reducible second-order intertwining operators of non-stationary
Schr̈odinger operators. In this paper we consider the most general first-order intertwining
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relations for the non-stationary Schrödinger as well as for the Fokker–Planck equation. In
addition, we construct the corresponding symmetry operators. The most general second-order
intertwining for the non-stationary Schrödinger operator is also considered. However, due to
the complicated structure of the general case we consider only several special cases in full
detail. Our paper is organized as follows.

In the next section we will reconsider the first-order intertwining and show that, due to
theR-separation of variables, it provides no basic new results besides those already known
from the stationary case of time-independent potentials. This observation was also recently
anticipated by Finkelet al [15]. However, we additionally show that this fact can be related
to some underlying symmetry structure. We also discuss the time-dependent Fokker–Planck
equation in this context and find that this case does not lead to a trivial result in the above sense.
In section 3 we consider the intertwining for stationary potentials by a non-stationary, i.e. time-
dependent, second-order operator. We present particular results for systems with a third-order
or a fourth-order symmetry operator. We also show that the reducible cases (as studied in [14])
are only very special cases of this class. In section 4 we finally discuss the intertwining of
general non-stationary Schrödinger operators by non-stationary second-order operators. As
special cases we consider the intertwining of Schrödinger operators corresponding to a non-
stationary Hamiltonian with that for a stationary one as well as with that of a time-dependent
harmonic oscillator. In the concluding remarks in section 5 we give a short summary and
discuss some aspects omitted in the main text such as zero modes, domain question and
generalizations to complex potentials.

2. Intertwining by first-order operators

In this section we consider the most general first-order intertwining relations for the
Schr̈odinger operator as defined in (5) and the Fokker–Planck operatorF [U ],

F [U ] = −∂t + ∂2
x + ∂xU

′(x, t) = −∂t + ∂2
x +U ′(x, t)∂x +U ′′(x, t). (6)

In the latter case, relation (1) becomes the well known Fokker–Planck equation [16]
characterizing the diffusion of a macroscopic (one-dimensional) degree of freedom in an
external time-dependent drift potentialU : R × R → R, (x, t) 7→ U(x, t) with a diffusion
constant set equal to unity. For both cases we start with the most general intertwining operator
of first order given by

q+(x, t) = ξ0(x, t)∂t + ξ1(x, t)∂x + ξ2(x, t) (7)

with, in general, complex-valued functionsξ0, ξ1 andξ2. Note that in contrast to [13] we also
allow for a first-order operator in∂t .

2.1. The Schr̈odinger operator and separation of variables

For the above-defined Schrödinger operator (5) the most general first-order intertwining
relation reads

S[V1]q+ = q+S[V2] (8)

where the functionsξi (i = 0, 1, 2) and the potentialsV1,2 are clearly not independent of each
other. In fact, we now consider the question: whichξs lead to real-valued potentials and how
are the latter connected with the them?

Inserting the explicit forms of the Schrödinger operators (5) and the intertwining operator
(7) into relation (8) and equating the coefficients of identical (partial) differential operators we
immediately find thatξ0 andξ1 may only depend on time, i.e.ξ ′0 = 0= ξ ′1. The assumption that
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ξ0 does not vanish identically then leads to the conclusion that the potential differenceV1−V2

does depend only on time. This is a rather trivial case† and, therefore, we will setξ0 ≡ 0
without loss of generality‡. Now making the following reparametrizationsξ1(t) = eiβ(t)ρ(t)

andξ2(x, t) = eiβ(t)ρ(t)χ ′(x, t) with β : R→ R, ρ : R→ R+ andχ : R× R→ C we find

V1(x, t) = χ ′2(x, t) + χ ′′(x, t)− iχ̇(x, t) + α(t)− β̇(t) + iρ̇(t)/ρ(t)
V2(x, t) = χ ′2(x, t)− χ ′′(x, t)− iχ̇(x, t) + α(t)

(9)

where α is some time-dependent complex-valued integration constant. Following the
argumentation made in footnote † we may setβ ≡ 0 without loss of generality. Furthermore,
we may also setα ≡ 0 because it can always be absorbed inχ via the substitution
χ → χ − i

∫
dṫ α. Hence, we are left with

V1(x, t) = χ ′2(x, t) + χ ′′(x, t)− iχ̇(x, t) + iρ̇(t)/ρ(t)
V2(x, t) = χ ′2(x, t)− χ ′′(x, t)− iχ̇(x, t).

(10)

Here the so-called superpotentialχ is still not arbitrary as the potentials are assumed to be real
valued. This can, for example, be achieved by assuming a stationary real-valued superpotential.
This, however, leads to the standard stationary supersymmetric quantum mechanics discussed
to a large extend during the last two decades [2]. Therefore, we will consider a complex-valued
superpotential

χ(x, t) = h(x, t) + ig(x, t) (11)

with real-valued functionsh andg 6≡ 0. The reality condition ImV1 = Im V2 = 0 then leads
to

2g′′ + ρ̇/ρ = 0 2h′g′ − g′′ − ḣ = 0 (12)

which can easily be integrated to

g(x, t) = −1

4

ρ̇(t)

ρ(t)
x2 +

1

2
ρ(t)µ̇(t)x + γ (t)

h(x, t) = 1
2 ln ρ(t) +K(x/ρ(t) +µ(t))

(13)

whereµ andγ are arbitrary real-valued function of time andK is an arbitrary real-valued
function of the variabley = x/ρ + µ. In terms of these functions the final form of the two
partner potentials is

V1,2(x, t) = 1

ρ2(t)
[K ′2(y)±K ′′(y)] − ρ̈(t)

4ρ(t)
x2

+

(
ρ̇(t)µ̇(t) +

ρ(t)µ̈(t)

2

)
x − ρ

2(t)µ̇2(t)

4
+ γ̇ (t) (14)

and the intertwining operator reads

q+(x, t) = ρ(t)∂x +K ′(x/ρ(t) +µ(t))− i

2
(ρ̇(t)x − ρ2(t)µ̇(t)). (15)

It is obvious that with appropriate choices forK, ρ, µ andγ at least one of the two potentials
(14) can be made stationary. We will not investigate this aspect here but wish to discuss a more
general property of these quantum systems, the so-calledR-separation of variables.

† Note that fromV2(x, t) − V1(x, t) = f (t) andS[V1]ψ1 = 0 follows thatS[V2]ψ2 ≡ S[V1 + f ]ψ2 = 0 has
the solutionψ2(x, t) = exp{i ∫ t0 dτ f (τ)}ψ1(x, t). That is, knowing a normalized solution of the time-dependent
Schr̈odinger equation forV1 one immediately also has a solution forV2, which is also normalized. Complex-valued
f ’s are not allowed as both,V1 andV2, are assumed to be real valued.
‡ A posteriori, this justifies the ansatz made in [13].
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In doing so, let us demonstrate that the non-stationary Schrödinger equation

S[V1,2]ψ1,2(x, t) ≡ (i∂t + ∂2
x − V1,2(x, t))ψ1,2(x, t) = 0 (16)

with potentials as given in (14), which is equivalent to the intertwining (8), admits a separation
of variables. In fact, under the transformation

y = x/ρ(t) +µ(t) φ1,2(y, t) =
√
ρ(t)eig(x,t)ψ1,2(x, t) (17)

this Schr̈odinger equation becomes [17]

iρ2(t)∂tφ1,2(y, t) = [−∂2
y +K ′2(y)±K ′′(y)]φ1,2(y, t) (18)

which is obviously separable iny and t . Hence, the solutions of the original problem (16)
have the general formψ(x, t) = R̃(y, t)Y (y)T (t) which is known as theR-separation of
variables [18]. In other words, for any pair of Schrödinger operatorsS[V1,2], which admits a
first-order intertwining relation (8) there exists a transformation (17) to some new coordinate
in which the potentials become stationary and form the well known pair of stationary SUSY
partner potentials [2]. As a consequence, nothing essentially new emerges from the first-order
intertwining of the non-stationary Schrödinger operator. This fact was also recently observed
by Finkelet al [15]. Note that the transformation associated with the special caseρ(t) = 1
andµ(t) = vt with constant velocityv corresponds to the Galilei transformation. See, for
example, the textbook by Galindo and Pascual [19].

Here, let us add that thisR-separation of variables can be related to the existence of
symmetry operators for the two Schrödinger operators in questions. First, we note that with
the results above one can directly verify the adjoint intertwining relation

q−S[V1] = S[V2]q− (19)

where

q− ≡ (q+)† = −ρ(t)∂x +K ′(x/ρ(t) +µ(t)) +
i

2
(ρ̇(t)x − ρ2(t)µ̇(t)). (20)

In other words, in analogy to the discussion of (3) the Schrödinger operatorS[V ] and in
particular its time-derivative i∂t can be viewed as self-adjoint operators on a suitable domain,
(i∂t )† = i∂t . Then from (8) and (19) immediately follows

[S[V1], q+q−] = 0 [S[V2], q−q+] = 0 (21)

which is a special case of (4). This discussion suggests that the reverse conclusion may also
be true. In fact we are able to prove the following theorem.

Theorem. Any Schr̈odinger operatorS[V ] (with real-valued potentialV ) having a self-adjoint
symmetry operatorR, obeying [S[V ], R] = 0 and being quadratic in∂x , admits theR-
separation of variables for the corresponding time-dependent Schrödinger equation and an
intertwining relation of first order with its superpartner.

For the proof of this theorem we start with the most general quadratic and self-adjoint
ansatz for the symmetry operator,

R(x, t) = −ω(t)∂2
x + i{δ(x, t), ∂x} + ζ(x, t) (22)

obeying the symmetry condition

[S[V ], R] ≡ [i∂t + ∂2
x − V (x, t), R(x, t)] = 0. (23)

Here,δ : R × R→ R andζ : R × R→ R are arbitrary real functions of position and time,
whereasω : R→ R+ is, without loss of generality, assumed to be an arbitrary strictly positive
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function of time only. The coefficient functions of the symmetry operator (22) are clearly
related with the potentialV due to the symmetry condition (23) giving rise to

δ(x, t) = 1

4
ω̇(t)x +

1

2
ν(t) ζ(x, t) = 8(z) +

ω̇2(t)

16ω(t)
x2 +

ν(t)ω̇(t)

4ω(t)
x (24)

where8 is an arbitrary real function of the variable

z = x√
ω(t)
−
∫ t

0
dτ

ν(τ )

ω3/2(τ )
(25)

andν is another arbitrary real function of time. In terms of these functions the potential must
take the form

V (x, t) = − 1

8ω(t)

(
ω̈(t)− ω̇2(t)

2ω(t)

)
x2 − 1

2ω(t)

(
ν̇(t)− ν(t)ω̇(t)

2ω(t)

)
x +

8(z)

ω(t)
. (26)

We note that theR-separation of variables for the Schrödinger equationS[V ]ψ(x, t) = 0
becomes explicit by making the change of variables

φ(z, t) = ω1/4(t) exp

{
− i

(
ω̇(t)

8ω(t)
x2 +

ν(t)

2ω(t)
x − 1

4

∫ t

0
dτ

ν2(τ )

ω2(τ )

)}
ψ(x, t) (27)

which results in

(iω(t)∂t + ∂2
z +8(z))φ(z, t) = 0. (28)

Let us remark that the symmetry operatorR of the form (22) with coefficient functions related
by (24) is factorizable, i.e.R = q̃+q̃− > 0 with q̃− = (q̃+)†. The superchargẽq+ again has
the form (15) if the following substitutions are made:

ρ(t)→ ω1/2(t) µ̇(t)→− ν(t)

ω3/2(t)
y → z K ′2 +K ′′ → 8. (29)

Thus, we conclude that if some non-stationary Schrödinger operatorS[V ] has a symmetry
characterized by a second-order operator of the form (22) it admits theR-separation of variables
and the superpartner potential ofV can also be constructed. The non-stationary Schrödinger
operator associated with this superpartner again has a positive symmetry operator, which in
this case is given bỹq−q̃+.

2.2. The Fokker–Planck equation

In this section we consider the most general first-order intertwining relations allowing one to
construct from known solutions of one Fokker–Planck equation, solutions of its corresponding
superpartner. In order to keep as close as possible to the previous discussion we first transform
the Fokker–Planck equation into a diffusion (or imaginary-time Schrödinger) equation. Indeed,
it is well known [16] that the Fokker–Planck equationF [U ]P(x, t) = 0 transforms under the
substitutionP(x, t) = exp{−U(x, t)/2}ψ(x, t) into the diffusion equation

D[V ]ψ(x, t) ≡ (−∂t + ∂2
x − V (x, t))ψ(x, t) = 0 (30)

where the potentialV is given in terms of the drift potentialU in the following way:

V (x, t) = 1
4U
′2(x, t)− 1

2U
′′(x, t)− 1

2U̇ (x, t). (31)

Note that the diffusion operatorD[V ] can be obtained from the corresponding Schrödinger
operatorS[V ] via a Wick rotation i∂t → −∂t . There are, however, essential differences from
the physical point of view as the solutionP of the Fokker–Planck equation should represent a
probability distribution. As a consequenceψ(x, t) = exp{U(x, t)/2}P(x, t) is also required
to be real and positive.
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We are now interested in finding the most general first-order intertwining operatorq+ as
given in (7) obeying the relation

D[V1]q+ = q+D[V2] ⇐⇒ F [U1]eU1/2q+e−U2/2 = eU1/2q+e−U2/2F [U2]. (32)

Here we closely follow the derivations of the previous section and the result is identical to
that given in (9) after Wick rotation. Again we may setα ≡ 0 as it can be absorbed inχ .
Furthermore, as noted above, the intertwining operatorq+ = eiβρ(∂x+χ) should map a positive
solution ofD[V2]ψ2 = 0 into a positive solution ofD[V1]ψ1 = 0, i.e.ψ1 = q+ψ2 > 0. This
leads us to the conclusion thatβ must vanish identically andχ has to be real-valued. Hence,
we are left with

V1(x, t) = χ ′2(x, t) + χ ′′(x, t) + χ̇(x, t)− ρ̇(t)/ρ(t)
V2(x, t) = χ ′2(x, t)− χ ′′(x, t) + χ̇(x, t)

(33)

giving rise, cf (31), to the following form of the drift potentials:

U1(x, t) = 2 lnρ(t)− 2χ(x, t)

U2(x, t) = 2χ(x,−t). (34)

In contrast to our result in the previous section we find here thatχ has to be a real-valued
function which, however, is a function of the two independent variablesx andt . Therefore,
the Fokker–Planck case, in contrast to the Schrödinger case, cannot be transformed into a
stationary problem. This seems to be related to the fact that the diffusion operator is, in
contrast to the Schrödinger operator, not self-adjoint. Consequently, the adjoint intertwining
relation (3) and the resulting symmetries (4) do not exist. Physically, this is due to the time-
reversal symmetry, which exists in the case of the Schrödinger equation [19] but not for the
Fokker–Planck and diffusion equation. This is also explicated in the above result (34) which
shows that the two SUSY-partner drift potentials are essentially related via a time reversal.
The additional difference in an overall sign between them is already known from the stationary
case [2].

3. Second-order intertwining for stationary potentials: particular solutions and
symmetry operators

Recently higher-order generalizations of the SUSY-intertwining relations for stationary
Schr̈odinger operators have been investigated to some extent [9, 10]. In the one-dimensional
case it was shown [10] that in general the intertwining of a pair of stationary Schrödinger
operators by a second-order differential operator cannot be reduced to two consecutive
transformations with some intermediate self-adjoint Hamiltonian. In the two-dimensional case
second-order intertwining operators also allow one to intertwine pairs of standard stationary
Schr̈odinger Hamiltonians with scalar potential [11]. All of these self-adjoint Hamiltonians
have a hidden symmetry, cf (4), characterized by a differential operator.

In the remaining part of this paper we will investigate the intertwining of a pair of
Schr̈odinger operatorsS[V1] andS[V2] by second-order intertwining operators of the form:

q+(x, t) = G(x, t)∂2
x − 2F(x, t)∂x +B(x, t). (35)

As in the first-order case it can be shown that the inclusion of an additional term being of first
order in∂t leads to the trivial situations where the differenceV1 − V2 depends on the timet
only, cf footnote † p 4.Furthermore, from the intertwining relation (8) withq+ above one can
conclude that the functionGmay not depend onx and similar to the discussion in the previous
section it is even possible to exclude a phase. In other words, without loss of generality we



3590 F Cannata et al

haveG(x, t) ≡ g(t), which should not be confused withg used previously, and consider from
now on an intertwining operator of the form

q+(x, t) = g(t)∂2
x − 2F(x, t)∂x +B(x, t). (36)

We are unable to find the general analytic solutions of the intertwining relation (8) withq+

as given above. Therefore, in this and the next section we will construct only some particular
solutions of interest. More precisely, in this section we shall look for the solutions of the
intertwining relation (8) for the case where both potentialsV1 andV2 are stationary, i.e. do not
depend ont . It is evident that one class of solutions is already known from [10]. Assuming a
superchargeq+ whose coefficient functions are real and do not depend ont , it follows that the
corresponding solutions of (8) will coincide with those of the stationary intertwining relations
(−∂2

x +V1(x))q
+(x) = q+(x)(−∂2

x +V2(x))which can be found in [10]. Here we are interested
in more general solutions of (8) with operatorsq+ depending manifestly ont . That is, we will
search for particular solutions of the intertwining relation

(i∂t −H1)q
+(x, t) = q+(x, t)(i∂t −H2) (37)

with standard stationary HamiltoniansH1,2 = −∂2
x + V1,2(x) but an explicit time-dependent

intertwining operator.

3.1. Systems with symmetry operators of third order

A first suitable ansatz with simplet-dependence in (36) is

q+(x, t) = M+(x) +A(t)a+(x) (38)

where we have set

M+(x) ≡ ∂2
x − 2f (x)∂x + b(x) a+(x) ≡ ∂x +W(x). (39)

Here all functions besidesA are considered to be real valued†. With this ansatz the intertwining
relation (37) results in the condition

iȦa+ = H1M
+ −M+H2 +A(H1a

+ − a+H2). (40)

Equating the coefficient of identical powers in∂x on both sides of (40) one obtains the following
system of equations:

iȦ = 2m̃ + 2mA

H1M
+ −M+H2 = 2m̃a+

H1a
+ − a+H2 = 2ma+

(41)

with real constants̃m andm. For our further discussion we consider the two casesm 6= 0 and
m = 0 separately.

(a) Solutions form 6= 0. In this case the first equation in (41) immediately leads to
A(t) = m0e−2imt − m̃/m,m0 ∈ R, and results in an intertwining operator of the form

q+(x, t) = ∂2
x −

(
2f (x) +

m̃

m

)
∂x + b(x)− m̃

m
W(x) +m0e−2imta+(x). (42)

It is obvious that without loss of generality we may setm̃ = 0 as a non-vanishing̃mmay always
be absorbed via a proper redefinition off andb. As a consequence, the second relation in (41)
leads to a second-order intertwining betweenH1 andH2. This has already been considered

† We also assumeA 6≡ 0, as the caseA ≡ 0 has already been studied in [10].
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in [10] and it was found that the potentialsV1, V2 and the functionb can be expressed in terms
of f and two arbitrary real constantsa andd:

V1,2(x) = ∓2f ′(x) + f 2(x) +
f ′′(x)
2f (x)

− f ′2(x)
4f 2(x)

− d

4f 2(x)
− a

b(x) = −f ′(x) + f 2(x)− f ′′(x)
2f (x)

+
f ′2(x)
4f 2(x)

+
d

4f 2(x)
.

(43)

Finally, we note that the last equation in (41) coincides with the usual first-order intertwining
relation of SUSY quantum mechanics between the HamiltoniansH1 andH2 + 2m. Therefore,
the potentials can be expressed in terms of the superpotentialW as follows:

V1(x) = W 2(x) +W ′(x) V2(x) = W 2(x)−W ′(x)− 2m. (44)

Comparing this with (43) we conclude thatW(x) = −2f (x) − mx andf must satisfy the
so-called Painleve IV equation:

f ′′ = f ′2

2f
+ 6f 3 + 8mxf 2 + 2(m2x2 −m + a)f +

d

2f
. (45)

As an example we mention here that ford = −a2 it can be shown that anyf obeying
the generalized Riccati equationf ′ = −2f 2 − 2mxf − a is also a solution of (45). The
general solution of this generalized Riccati equation and the corresponding potentials (44) are
discussed in detail in [5], which also shows their connection to the most general SUSY partners
of the harmonic-oscillator potential. Note that cases withd < 0 are reducible ones [10].

We have already discussed in the previous section that the intertwining relation (37) and
its adjoint give rise to the symmetry operatorsq+q− andq−q+ for (i∂t −H1) and(i∂t −H2),
respectively. For the present case of stationary potentials one can use the results of [10] to show
that these symmetry operators (defined up to a square polynomial inH1,2) have the explicit
form

R(1)(x, t) = e2imtM+(x)a−(x) + e−2imta+(x)M−(x)
R(2)(x, t) = e2imta−(x)M+(x) + e−2imtM+(x)a−(x)

(46)

wherea− = (a+)† andM− = (M+)†. Note that these results have also been recently found
by Fushchych and Nikitin [20] using a different approach.

(b) Solutions form = 0. In this case it follows from (41) thatA(t) = −2im̃t where,
without loss of generality, we have set the integration constantA(0) to zero. The remaining
two conditions of (41) lead to

V1,2(x) = W 2(x)±W ′(x) f (x) = n− 1
2W(x)

b(x) = 1
2(W

′(x)−W 2(x))− 2nW(x)− m̃x (47)

whereW is a solution of the Painleve II equation

W ′′ = 2W 3 + 4m̃xW + k (48)

andn, k are real constants. Here we note that an additional integration constant appearing on
the right-hand side of the last relation in (47) has been set to zero as it can always be absorbed
via a proper redefinition of the independent variablex.

Again let us mention that fork = −4m̃ a particular solution of this equation reads
W(x) = 1/x giving rise to inverse-squared potentialsV1,2. On the other hand, fork = 2m̃ a
solution of the ordinary Riccati equationW ′ = W 2 + kx is also a solution of (48). Note that
such solutions can be expressed in terms of Bessel functions [21].
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As in the previous case the intertwining relation (37) leads to symmetry operators, which
can also be reduced to third-order differential operators:

R1 = M+M− −H 2
1 + 2im̃t (M+a− − a+M−) + 4m̃2t2H1

R2 = M−M+ −H 2
2 + 2im̃t (a−M+ −M−a+) + 4m̃2t2H2.

(49)

However, in addition to that, because ofm = 0, we can even construct another pair of third-
order operators commuting with(i∂t − H1,2). Indeed, the last two equations of (41) can be
rearranged as follows:

[H1,M
+a−] = 2m̃H1 [H2, a

−M+] = 2m̃H2 (50)

and directly lead to

[i∂t −H1, iM
+a− + 2m̃tH1] = [i∂t −H2, ia

−M+ + 2m̃tH2] = 0. (51)

Hence, besides those given in (49), we have found an additional Hermitian pair of symmetry
operators:

R̃1 = i
(
M+a− − a+M−

)
+ 4m̃tH1

R̃2 = i
(
a−M+ −M−a+

)
+ 4m̃tH1.

(52)

Whereas these operators have already been given in [20], the previous pair (49) is a new,
independent one, which does not commute with (52).

3.2. Systems with symmetry operators of fourth order

As a second ansatz for the intertwining relation (37) we consider an operator with two
coefficient functions depending manifestly on time:

q+(x, t) = θ(t)M+(x) + iλ(t)xa+(x) (53)

whereθ andλ are assumed to be real-valued functions and the operatorsM+ anda+ are of the
same form as in (39). For this ansatz the intertwining relation (37) leads to

θ̇ = −2λ λ̇ = βθ
2M+ = xa+H2 −H1xa

+ βxa+ = M+H2 −H1M
+.

(54)

The first two equations, containing the real constantβ, can easily be integrated and yield, for
β > 0, oscillatory solutions. Furthermore, with the above conditions the potentialsV1,2 and
the functionsW andb can exclusively be expressed in terms of the functionf :

W(x) = −2f (x) +
c

x
b(x) = f ′(x) + 2f 2(x)− V2(x) + (β/4)x2 + a0

V1,2(x) = ∓2f ′(x) + 4f 2(x) +
2(1− 2c)f (x)

x
+
β

8
x2 +

4(c − 1)f (x)

x2

− 2

x2

∫ x

x0

dz [f (z)− 2zf 2(z)] + a0

(55)

wherea0, c andx0 are some real constants and the functionf must satisfy the nonlinear
third-order differential equation:

−2fV ′2 + 4bf ′ + f ′′′ + 4f ′2 + 4ff ′′ + 2βxf − βc + β/2= 0. (56)

This equation is certainly too complicated to solve for arbitrary values of the constantsβ andc.
However, forc = 0 and an arbitraryd one can show that allf s satisfying the Riccati equation

f ′(x) = 2f 2(x)− (β/4)x2 + d (57)

are also solutions of (56). Such solutions correspond to Hamiltonians obeying the intertwining
relationH1a

+ = a+H2 in addition to (54).
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It is straightforward to show that there are no other values† of the constantc for which
the HamiltoniansH1,2 are intertwined by operators of first or second order. Since solutions
of equation (57) do not exhaust the solutions of (56) we believe that, at least in some cases,
operatorsq+(x, t) of the form (53) intertwine the Schrödinger operatorsS[V1,2] but not the
HamiltoniansH1,2.

3.3. Reducible and irreducible second-order intertwining

The natural question we now consider concerns the reducibility of the second-order
intertwining operator (36) to a pair of consecutive first-order operatorsa+

1 anda+
2. We again

assume that the real potentialsV1,2 = V1,2(x) are stationary but the intermediate real potential
V may depend on time as well and to which we may always add some arbitrary time-dependent
function 1 = 1(t). In other words, we consider the following chain of Darboux-type
transformations between the Schrödinger operators:

S[V1]
a+

1−→ S[V ] −→ S[V +1]
a+

2−→ S[V2]. (58)

As shown in section 2, a first-order intertwining forS[V1] andS[V2] implies the existence of
second-order symmetry operators, that is,

[S[V1], a+
1a
−
1 ] = [S[V2], a−2 a

+
2] = 0. (59)

Let us first consider that case wherea+
1a
−
1 is a trivial symmetry operator, i.e.a+

1a
−
1 =

H1 + const. Then the intertwining operatorsa±1 being of the form (7) with superpotential (11)
can be simplified to

ρ(t) ≡ 1 g(x, t) ≡ g(t) h(x, t) ≡ h(x). (60)

Thus, the operatorsa±1 do not depend on time,a±1 = ±∂x + h′(x). The same argumentation
applies to the operatorsa±2 andH2. Evidently, in this case the HamiltoniansH1,2 belong to
the class considered in [10], where it has been shown that reducible as well as irreducible
second-order intertwining operators exist.

In the case of a non-trivial symmetry operatora+
1a
−
1 the potentialV1 is of the form (see [20]

and references therein)

V1(x) = k0 + k1x + k2x
2 +

k3

(x + k4)2
. (61)

It is evident that this class of potentials does not exhaust all solutions of intertwining relations
(37) with ans̈atze (38) or (53) forq±.

The conclusion drawn from this discussion is, that the intertwining relations investigated
in this section have both reducible and irreducible solutions of second order in∂x .

4. Second-order intertwining for non-stationary potentials

In order to consider the intertwining of Schrödinger operators with a non-stationary potential,
it is useful to simplify the general form (36) of the intertwining operatorq+ a little further.
Indeed, by inspecting the general intertwining relation (8) withq+ as given in (36) one finds
the condition

Im F(x, t) = 1
4 ġ(t)x + g1(t) (62)

† We exclude here the caseβ = 0 which corresponds to the intertwining ofH1,2 byM+.
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with an arbitrary real functiong1. After multiplying both sides of (8) with

g−1/4(t) exp

[
i

(
ġ(t)x2

8g(t)
+
g1(t)x

g(t)
−
∫ t

0
dt ′

g2
1(t
′)

g2(t ′)

)]
(63)

and performing some algebra we obtain a new intertwining relation,(
i∂t + 2i

(
ġx

4g(t)
+
g1

g

)
∂x − H̃1

)
q̃+ = q̃+

(
i∂t + 2i

(
ġx

4g
+
g1

g

)
∂x − H̃2

)
(64)

which, of course, is equivalent to (8). Here the ‘new supercharge’ and ‘new Hamiltonians’ are
given by

q̃+ = g∂2
x − 2(ReF)∂x +B +

i

4
ġ − 1

g

(
ġx

4
+ g1

)2

− 2iF

g

(
ġx

4
+ g1

)
≡ g∂2

x − 2(ReF)∂x + B̃ (65)

and

H̃1,2 = H1,2 +
1

8

(
g̈

g
− ġ2

2g2

)
x2 +

1

2

(
g1ġ

g2
− 2ġ1

g

)
x (66)

respectively.
Now, in a second step we make a non-local transformation [17] of the independent variables

(x, t) 7→ (y, τ ) with

τ =
∫ t

0
dt ′

1

g(t ′)
y = g−1/2(t)x − 2

∫ t

0
dt ′ g1(t

′)g−3/2(t ′) (67)

which brings the intertwining relation (64) into the form

(i∂τ + ∂2
y − gṼ1)(∂

2
y − 2g−

1
2 (ReF)∂y + B̃)

= (∂2
y − 2g−

1
2 (ReF)∂y + B̃)(i∂τ + ∂2

y − gṼ2) (68)

where

Ṽi(y, τ ) = Vi(x, t) +
1

8

(
g̈

g
− ġ2

2g2

)
x2 +

1

2

(
g1ġ

g2
− 2ġ1

g

)
x. (69)

This shows that, without loss of generality, we could have chosen from the very beginning the
operatorq+ to be of the form

q+(x, t) = ∂2
x − 2f (x, t)∂x + b(x, t) + ic(x, t) (70)

with all coefficient functions being real valued.

4.1. Intertwining of a non-stationary Hamiltonian with a stationary one

In section 2 we only briefly mentioned that a first-order intertwining between Schödinger
operators for a non-stationary potentialV1 and a stationary oneV2 is possible. Here, because
of the absence of theR-separation of variables, we will reconsider this aspect for the case of
a second-order intertwining operator of the general form (70) in more detail.

The intertwining relation (8) with ansatz (70) leads to the following conditions for the
coefficient functions:

ḟ = c′ ḃ + c′′ + 4cf ′ = 0 f ′′ − b′ − V ′2 + 4ff ′ = 0

ċ + 2fV ′2 − b′′ − 4bf ′ − V ′′2 = 0 V1 = V2 − 4f ′.
(71)
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It may easily be verified that a particular set of solutions of (72) can be expressed in terms of
two arbitrary real-valued functionsf1 andf0, which depend only onx andt , respectively:

f (x, t) = 1

2

f ′1(x)
f1(x) + f0(t)

c(x, t) = 1

2

ḟ0(t)

f1(x) + f0(t)

V2(x) = 1

f ′21 (x)

(
λ2

0σδ +
1

2

(
f ′1(x)f

′′′
1 (x)−

1

2
f ′′21 (x)

)
− λ

2
0

4
f 2

1 (x)

)
V1(x, t) = V2(x)− 4f ′(x, t) b(x, t) = f ′(x, t) + 2f 2(x, t)− V2(x).

(72)

Recall thatb, c, f andV1 are functions ofx and t whereasV2 is assumed to be stationary,
i.e. independent of timet . This latter assumption actually leads to the explicit form
f0(t) = σ exp(λ0t) + δ exp(−λ0t) with arbitrary constantsσ , δ andλ0. For this case, the
symmetry operatorsRi associated with the Schrödinger operatorsS[Vi ] read

R1 = q+q− = H 2
1 + 1

4λ
2
0 − 2ċ − 4ic′∂x − 2ic′′

R2 = q−q+ = H 2
2 + 1

4λ
2
0

(73)

with Hi = −∂2
x + Vi . Note thatR1 explicitly depends on time, whereasR2 is stationary,

a fact which helps to show that the transformed functionψ1 = q+ψ2 of a normalized
solution ofS[V2]ψ2(x, t) = 0 is a normalizable solution ofS[V1]ψ1(x, t) = 0. Indeed,
because of the linearity of the Schrödinger operator and the stationarity ofV2, we may set
ψ2(x, t) ≡ ψ2(x, t;E) = e−iEtϕE(x) with ϕE being an eigenstate ofH2 associated with
eigenvalueE. Therefore, we have

(ψ1(x, t; Ẽ), ψ1(x, t;E)) ≡ (q+ψ2(x, t; Ẽ), q+ψ2(x, t;E)) = (E2 + λ2
0/4)δẼE. (74)

Finally, we mention that in the particular case of a constant potentialV2 (without loss of
generality we may setV2 ≡ 0) the functionf1 has to be a solution of the linear fourth-order
differential equation with constant coefficients (see equation (72))

f ′′′′1 − λ2
0f1 = 0 (75)

whose general solution may easily be constructed by standard methods and will be an arbitrary
linear combination of the fundamental solutions sin(

√
λ0x), cos(

√
λ0x), sinh(

√
λ0x) and

cosh(
√
λ0x). Note that the partner potentialV1(x, t) = −2[∂2

x log(f1(x) + f0(t))] has
the same scattering properties asV2 ≡ 0. That is, it is a reflectionless potential. As
particular example we may choosef1(x) = cosh(x) andf0(t) = cosh(t) which leads to
V1(x, t) = −2 cosh(x) sinh(t)/(cosh(x) + cosh(t))2.

4.2. Intertwining of a non-stationary Hamiltonian with a time-dependent
harmonic-oscillator Hamiltonian

In the remaining part of this section we consider the second-order intertwining of Schrödinger
operators associated with two non-stationary Hamiltonians. In doing so we limit ourselves to
one of the simplest non-stationary Hamiltonians, namely, that of a harmonic oscillator with a
time-dependent frequency and search for the class of non-stationary potentialsV1 which are
intertwined with this one.

As a starting point we choose the potential to be of the form

V2(x, t) = −1

8

(
g̈(t)

g(t)
− ġ2(t)

2g2(t)

)
x2 (76)

which corresponds to the trivial potentialṼ2 ≡ 0 in (69) as we also setg1 ≡ 0 in the following
discussion. As a consequence we obtain from (68) the intertwining relation:

(i∂τ + ∂2
y − Ũ1)(∂

2
y − 2f̃ (y, τ )∂y + B̃(y, τ )) = (∂2

y − 2f̃ (y, τ )∂y + B̃(y, τ ))(i∂τ + ∂2
y ) (77)
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where

Ũ1(y, τ ) = g(t)Ṽ1(y, τ ) f̃ (y, τ ) = g−1/2(t)ReF(x, t) (78)

are given in terms of the new variablesy = x/√g andτ = ∫ t0 dt ′ g−1(t ′). Taking into account
the relations (72) we have

Ũ1(y, τ ) = −4(∂yf̃ )(y, τ ) B̃(y, τ ) = (∂yf̃ )(y, τ ) + 2f̃ 2(y, τ ) + ic̃(y, τ )

f̃ (y, τ ) = 1

2

(∂yf̃1)(y)

f̃1(y) + f̃0(τ )
c̃(y, τ ) = 1

2

(∂τ f̃0)(τ )

f̃1(y) + f̃0(τ )

(79)

wheref̃0(τ ) = σ̃eλ̃0τ + δ̃e−λ̃0τ andf̃1 is an arbitrary solution of (75) withλ0 andx replaced
by λ̃0 andy, respectively. Returning to the original variables(x, t) and settingg(t) ≡ ρ2(t),

we find that the original potentials read

V1(x, t) = − ρ̈(t)

4ρ(t)
x2 − 2

[
∂2
x log

(
f̃1(ρ

−1(t)x) + f̃0

(∫ t

0
dt ′ ρ−2(t ′)

))]
V2(x, t) = − ρ̈(t)

4ρ(t)
x2

(80)

which may be compared with the result of Bluman and Shtelen [17] who derived new potentials
being related to the free quantum system (in they–τ coordinates) via non-local transformations.
Here we note that the special caseρ(t) = cos(ωt) leads to the ordinary (i.e. time-independent)
harmonic oscillator case and the corresponding transformation has been called the Jackiw
transformation†.

The present result is also closely related to the special caseK ′2−K ′′ = const. discussed
in section 2.1 where we have shown its close connection with theR-separation of variables.
Thus solutions forV1 in (80) can be related to a free quantum system characterized by (18).

5. Concluding remarks

In this paper we considered the most general time-dependent first- and second-order
intertwinings of non-stationary Schrödinger operators. Our discussion in section 2, where
we considered the first-order case, generalizes that of Bagrov and Samsonov [13] from various
aspects. For example, we start out with a more general ansatz as [13] for the intertwining
operator and show that the one made in [13] can be obtained if additive purely time-dependent
terms in the potentials may be ignored. In addition we have shown that all results on the
first-order intertwining of non-stationary Schrödinger operators can be reduced to stationary
problems. This observation was also recently anticipated by Finkelet al [15] who found the
corresponding point transformation. In addition we showed that this fact, which is called the
R-separation of variables, is related to the existence of a symmetry operator induced by the
intertwining relation. In this connection we also discussed, to the best of our knowledge for
the first time, the Fokker–Planck equation.

In sections 3 and 4 we considered second-order intertwining operators. Again an initial
brief discussion for this case is due to Bagrov and Samsonov [14] which, however, is limited to
reducible intertwining relations based on the use of an arbitrary solution of a given Schrödinger
equation. Here we started with the most general second-order intertwining operator. However,
due to the complicated structure of the general case we limited ourselves to the discussion of
some special cases of interest. In section 3 we gave results for systems with time-independent
potentials and symmetry operators of third and fourth order. We also showed that these results

† See, for example, [22–24] where more general transformations are given.
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contain reducible as well as irreducible intertwinings. In section 4 we considered intertwing
between systems with time-dependent and time-independent potentials. The corresponding
symmetry operators are also given. Finally, we presented explicit results for the second-order
intertwining of standard Schrödinger Hamiltonians for a time-dependent quadratic and an
arbitrary potential.

In the main text we concentrated on the implications of the intertwining relations but did
not take into account secondary aspects such as zero modes and domain questions, which we
are going to discuss now. As already mentioned in the introduction, the intertwining may
provide a new non-trivial solutionψ1 = q+ψ2 of a given problem only in the case whenψ2

does not belong to the kernel of the intertwining operatorq+. Elements of the kernel ofq+

lead to trivial solutions. On the other hand,S[V1]ψ1 = 0 may have non-trivial solutions which
cannot be obtained from solutions ofS[V2]ψ2 = 0. In this case,ψ1 necessarily belongs to
the kernel of the adjoint intertwining operatorq−, q−ψ1 = 0. Therefore, in order to find a
complete set of solutions one has to also consider the kernel of the intertwining operator and
that of the adjoint one. Again the first-order case allows a general discussion. The result of
our discussion in that case (section 2) has led us to the general formq+ = ρ(∂x + h′ + ig′),
whereh andg are given in (13). Asq+ is a first-order differential equation the dimension of
its kernel is at most one dimensional:

ψ2(x, t) ∝ exp{−h(x, t)− ig(x, t)}. (81)

The restriction of solutions to the linear space of square-integrable functions then leads to the
normalization condition

1=
∫

dx |ψ2(x, t)|2 =
∫

dy exp{−2K(y)}. (82)

Hence, the question of zero modes ofq+ or its adjoint is equivalent to a discussion of broken
versus unbroken SUSY of the corresponding stationary problem in they-coordinate [2]. The
situation in the case of second-order intertwining is a bit more complicated. However, it is clear
that the corresponding kernels are, at most, two-dimensional. In the particular case studied in
section 4.1 the kernel ofq+ is obviously empty for a real non-vanishing parameterλ0 as in this
case the symmetry operatorR2 = (q+)†q+, cf equation (73), is strictly positive.

Another aspect which we did not discuss in the main text is concerned with domain
questions. Indeed, one is usually only interested in square-integrable solutions of the
Schr̈odinger equation. There is no guarantee that the intertwining operator maps a square-
integrable solution into a another square-integrable one. This typically happens when the
superpotential or, more generally, the coefficient functions of the intertwining operator become
singular [2]. Hence, the rather general and abstract results presented in the main text should
be understood in the sense that whenever there appear singular coefficient functions a careful
analysis of such domain questions is mandatory. For example, the case of inverse-square
potentials briefly mentioned in section 3.1 (b) is only well defined if the domain (Hilbert
space) is defined by the space of square-integrable functions on the positive half-line with
proper (e.g. Dirichlet) boundary conditions atx = 0.

Finally, let us mention that it is also possible to extend our approach to complex-valued
potentialsV1,2, which have recently attracted some attention [25]. The case of stationary
complex potentials with first-order intertwining has already been studied in [6,26]. However,
because of the absence of the reality conditions, cf equation (12), the first-order intertwining of
such potentials will not lead to theR-separation of variables. Furthermore, the corresponding
Schr̈odinger operators are no longer self-adjoint and, therefore, no symmetry operators of the
form q+q− andq−q+ exist. This situation is similar to that of the Fokker–Planck and diffusion
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equation discussed in section 2.2. For the higher-order intertwining the notion of irreducible
transformations is lost in the case of complex potentials.
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